sky, Kowalski \& Avery, 1974; Thoennes, Wilkins \& Trahanovsky, 1974). For example, the C(19) methyl proton n.m.r. shift data are, respectively, $\delta_{\mathrm{H}}=-0.38$ and $\delta_{\mathrm{H}}=-0.08 \quad[\delta(\mathrm{TMS})=0.00]$ for $\mathrm{C}_{20} \mathrm{H}_{24}$ and $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Cr}$, indicating markedly increased proton shielding in the former. The distance of C (19) from the best least-squares plane containing the ten naphthalene atoms is $3.06 \AA$ for $\mathrm{C}_{20} \mathrm{H}_{24}$ and $3.13 \AA$ for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Cr}$. ${ }^{*}$ The decrease ($0.07 \AA$) in the C (19)naphthalene plane distance between the two molecules cannot account for the large observed chemical shift difference on the basis of calculated tables of ring current shielding for proton shifts (Haigh \& Mallion, 1972). The chromium tricarbonyl group obviously affects the ring current causing these shifts by withdrawing electron density from the aromatic ring in a manner which awaits detailed elucidation on the basis of the present, and other, structural and spectroscopic data.
The naphthalene ring (ring A) associated with the $\mathrm{Cr}(\mathrm{CO})_{3}$ group in the complex is expanded slightly with respect to the same ring A in $\mathrm{C}_{20} \mathrm{H}_{24}$. The corresponding bond distances in the complex are:
$\mathrm{C}(7)-\mathrm{C}(8) \quad 1.405(8) \AA$
$\mathrm{C}(9)-\mathrm{C}(10) 1.426$ (8)
C(7)-C(16) $1 \cdot 400$
(8)
(8)
$\mathrm{C}(10)-\mathrm{C}(15$
$\mathrm{C}(15)-\mathrm{C}(1$
(15) 1.439
C(8)-C(9) 1.365
(8)
$\mathrm{C}(15)-\mathrm{C}(16) 1.450$

The conformation of the substituted cyclohexane ring is nearly the same for both structures. Torsion angles for this ring are listed in Table 2 and may be compared with other similar structures (Pettersen, Cullen, Pearce, Shapiro \& Shapiro, 1974). Table 3 lists the interatomic distances for the hydrocarbon structure There are no intermolecular carbon-carbon contacts less than $3 \cdot 70 \AA$. A supplementary table of valency angles has been deposited along with the structure factor tables.

[^0]Table 2. Cyclohexane ring torsion angles for $\mathrm{C}_{20} \mathrm{H}_{24}{ }^{*}$

$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$74 \cdot 4(3)^{\circ}$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	$-73 \cdot 9(3)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$54 \cdot 3(4)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	$-32 \cdot 9(4)$
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)$	$32 \cdot 5(4)$
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{C}(2)$	$-55 \cdot 1(3)$

* The torsion angle $W(I J K L)$ is defined as the angle between the vector $J I$ and the vector $K L$ when viewed along $J K$. The sign of W is positive if $J I$ is to be rotated clockwise into $K L$ and negative if anticlockwise.

Table 3. Interatomic distances for $\mathrm{C}_{20} \mathrm{H}_{24}$

\quad Bond	Distance	Bond	Distance
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.504(6) \AA$	$\mathrm{C}(7)-\mathrm{C}(8)$	$1.403(5) \AA$
$\mathrm{C}(1)-\mathrm{C}(6)$	$1.545(5)$	$\mathrm{C}(7)-\mathrm{C}(16)$	$1.368(5)$
$\mathrm{C}(1)-\mathrm{C}(7)$	$1.510(5)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.363(5)$
$\mathrm{C}(1)-\mathrm{C}(17)$	$1.531(5)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.394(6)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.542(6)$	$\mathrm{C}(10)-\mathrm{C}(11)$	$1.436(5)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.535(5)$	$\mathrm{C}(10)-\mathrm{C}(15)$	$1.424(5)$
$\mathrm{C}(1)-\mathrm{C}(16)$	$1.518(5)$	$\mathrm{C}(11)-\mathrm{C}(12)$	$1.331(6)$
$\mathrm{C}(3)-\mathrm{C}(20)$	$1.528(6)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.367(7)$
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.542(6)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.371(6)$
$\mathrm{C}(5)-\mathrm{C}(6)$	$1.546(5)$	$\mathrm{C}(14)-\mathrm{C}(15)$	$1.406(6)$
$\mathrm{C}(5)-\mathrm{C}(18)$	$1.542(5)$	$\mathrm{C}(15)-\mathrm{C}(16)$	$1.409(5)$
$\mathrm{C}(5)-\mathrm{C}(19)$	$1.513(6)$		

Financial support from The Robert A. Welch Foundation of Houston, Texas, is gratefully acknowledged.

References

Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
Haigh, C. W. \& Mallion, R. B. (1972). Org. Mag. Res. 4, 203-228.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Pettersen, R. C., Cullen, D. L., Pearce, H. L., Shapiro, M. J. \& Shapiro, B. L. (1974). Acta Cryst. B30, 23602363.

Sletten, E., Sletten, J. \& Jensen, L. H. (1969). Acta Cryst. B25, 1330-1338.
Thoennes, D. J., Wilkins, C. L. \& Trahanovsky, W. S. (1974). J. Mag. Res. 13, 18-26.

Trahanovsky, W. S., Kowalski, D. J. \& Avery, M. J. (1974). J. Amer. Chem. Soc. 96, 1502-1507.

Acta Cryst. (1976). B32, 298

Dichlorobis(pyridine)zinc(II) - a Redetermination

By W.L.Steffen and Gus J. Palenik
Center for Molecular Structures, Department of Chemistry, University of Florida, Gainesville, Florida 32611, U.S.A.

(Received 30 June 1975; accepted 19 August 1975)

Abstract

Dichlorobispyridinezinc(II), $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Cl}_{2} \mathrm{Zn}$, M.W. 294.50, monoclinic, $P 2_{1} / c, a=8.580$ (3), $b=$ 17.677 (11), $c=8.397$ (5) $\AA, \quad \beta=101.42$ (4) ${ }^{\circ} ; \quad V=$ $1248.4(1.2) \AA^{3} ; d_{m}=1.56, d_{c}=1.567 \mathrm{~g} \mathrm{~cm}^{-3}$ for $Z=4$. The final R was 0.047 for the 1266 reflections used in

the analysis. The Zn atom is in the center of an approximately tetrahedral arrangement of the two Cl atoms $[\mathrm{Zn}-\mathrm{Cl}$ is $2 \cdot 215$ (2) and $2 \cdot 228$ (2) \AA] and the two N atoms $[\mathrm{Zn}-\mathrm{N}$ is 2.046 (5) and 2.052 (6) \AA] from the pyridine rings. The pyridine rings pack in two differ-
ent ways; one type forms dimer-like pairs related by a center of symmetry, and the second ring packs in an infinite chain generated by the c glide.

Introduction. Crystals of $\mathrm{ZnCl}_{2} \mathrm{py}_{2}$, py is pyridine, were obtained by slowly evaporating an ethanol solution of ZnCl_{2} and py (in a 1:2 mole ratio). Preliminary Weissenberg and precession photographs indicated the probable space group to be $P 2_{1} / c$. A crystal $0.47 \times 0.33 \times$ 0.17 mm was mounted on a glass fiber and was used for all subsequent measurements. The experimental details are similar to those given by Dymock \& Palenik (1974). The intensity data were measured using graph-ite-monochromatized Mo $K \alpha$ radiation to a 2θ limit of 45°. Of the 1638 reflections measured, those 1266 re-

Fig. 1. An ORTEP drawing of the $\mathrm{ZnCl}_{2} \mathrm{py}_{2}$ molecule showing the thermal ellipsoids and atomic numbering. Pertinent distances are $\mathrm{Zn}-\mathrm{Cl}(1)$ of 2.215 (2), $\mathrm{Zn}-\mathrm{Cl}(2)$ of 2.228 (2), $\mathrm{Zn}-\mathrm{N}(1 a)$ of 2.046 (5) and $\mathrm{Zn}-\mathrm{N}(1 b)$ of 2.052 (6) \AA. The angles in the coordination sphere are $\mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{Cl}(2)$ of $120 \cdot 9$ (1), $\mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{N}(1 a)$ of $108 \cdot 1$ (2) $\mathrm{Cl}(1)-\mathrm{Zn}-\mathrm{N}(1 b)$ of $107 \cdot 1$ (2), $\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{N}(1 a)$ of $107 \cdot 1$ (2), $\mathrm{Cl}(2)-\mathrm{Zn}-\mathrm{N}(1 b)$ of $106 \cdot 4$ (2) and $\mathrm{N}(1 a)-\mathrm{Zn}-\mathrm{N}(1 b)$ of $106 \cdot 3$ (2) ${ }^{\circ}$.
flections with $I \geq 2.0 \sigma(I)$ were considered reliable and were used in the analysis. The intensities were reduced to a set of structure amplitudes on an arbitrary scale by the application of Lorentz-polarization corrections. The monochromator was assumed to be a 50% perfect and 50% mosaic crystal.

The heavy-atom method was employed together with Fourier syntheses. Refinement was carried out by least-squares techniques using first isotropic and then anisotropic thermal parameters. The positions of the H atoms were determined from a difference Fourier synthesis and were included in subsequent structurefactor calculations but their parameters were not varied. The final $R\left(=\Sigma| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|\right)$ was 0.047 for the 1266 reflections used in the analysis. The final parameters for the non-hydrogen atoms are given in Table 1 and for the hydrogen atoms in Table 2.* The quantity minimized in the least-squares calculations was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$, where $w=F_{o}^{2} / a^{2}$ if $\left|F_{o}\right|<a, w=1$ if $a \leq\left|F_{o}\right| \leq b$, and $w=b^{2} / F_{o}^{2}$ if $\left|F_{o}\right|>b$, where $a=25.0$ and $b=50 \cdot 0$. The scattering factors for $\mathrm{Zn}, \mathrm{Cl}, \mathrm{N}$, and C were taken from Hanson, Herman, Lea \& Skillman (1964) and for H from Stewart, Davidson \& Simpson (1965).

Discussion. A series of dichlorobis(4-substituted pyridine)zinc(II) complexes was being studied in our laboratory and we wished to compare the $\mathrm{Zn}-\mathrm{Cl}$ and $\mathrm{Zn}-\mathrm{N}$ distances with those in the pyridine complex. Therefore, we undertook a redetermination of the $\mathrm{ZnCl}_{2} \mathrm{py}_{2}$ structure since the data reported by Sokolova, Atovmyan \& Porai-Koshits (1965), henceforth SAP, were poorly refined (R was 16%). An ORTEP drawing of $\mathrm{ZnCl}_{2} \mathrm{py}_{2}$ showing the atomic numbering and thermal ellipsoids determined from our study is shown in Fig. 1.

* A table of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 31332 (10 pp., 1 microfiche). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH1 1NZ, England.

Table 1. The final parameters of non-hydrogen atoms in $\mathrm{ZnCl}_{2}(\mathrm{py})_{2}$
All values are $\times 10^{4}$, except those for Zn , which are $\times 10^{5}$. The estimated standard deviations are given in parentheses. The temperature factor is of the form $\exp \left[-\left(\beta_{11} h^{2}+\beta_{22} k^{2}+\beta_{33} l^{2}+\beta_{12} h k+\beta_{13} h l+\beta_{23} k l\right)\right]$.

	x	y	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
Zn	76885 (9)	11769 (5)	20659 (9)	1366 (12)	368 (3)	1449 (13)	-8(12)	759 (18)	-28(12)
$\mathrm{Cl}(1)$	6503 (2)	196 (1)	2959 (2)	203 (4)	41 (1)	223 (4)	-11 (3)	156 (6)	25 (3)
$\mathrm{Cl}(2)$	9820 (2)	1710 (1)	3604 (2)	159 (3)	51 (1)	188 (3)	-15 (3)	10 (5)	-24 (3)
$\mathrm{N}(1 a)$	8304 (6)	876 (3)	-81 (6)	166 (9)	42 (2)	153 (9)	13 (8)	98 (16)	13 (8)
C(2a)	7596 (11)	319 (4)	-968 (9)	279 (20)	49 (3)	177 (13)	-62 (14)	132 (25)	-44 (11)
C(3a)	8016 (13)	92 (6)	-2390 (10)	341 (23)	60 (4)	204 (16)	-42 (17)	171 (30)	- 52 (14)
$\mathrm{C}(4 a)$	9191 (11)	468 (6)	-2916 (10)	261 (18)	64 (4)	185 (15)	82 (15)	163 (27)	2 (13)
C(5a)	9934 (11)	1041 (6)	-2003 (11)	254 (18)	84 (5)	233 (17)	-39 (15)	224 (28)	8 (15)
C(6a)	9456 (10)	1250 (6)	-587 (9)	228 (15)	60 (5)	206 (13)	-60 (15)	177 (23)	-27 (14)
$\mathrm{N}(16)$	6015 (7)	2016 (3)	1517 (6)	126 (10)	40 (2)	166 (9)	-8(8)	54 (15)	-2 (8)
C(2b)	4511 (10)	1902 (6)	1652 (10)	155 (14)	55 (5)	293 (16)	-9 (13)	80 (23)	61 (14)
$\mathrm{C}(3 b)$	3407 (10)	2484 (6)	1435 (13)	153 (16)	51 (4)	404 (22)	18 (13)	126 (29)	38 (16)
$\mathrm{C}(4 b)$	3820 (10)	3183 (5)	1049 (11)	171 (15)	54 (4)	297 (20)	16 (12)	75 (26)	29 (14)
$\mathrm{C}(5 b)$	5369 (10)	3303 (4)	916 (9)	222 (17)	39 (3)	256 (15)	-1 (12)	32 (24)	31 (11)
C(6b)	6437 (8)	2712 (4)	1142 (8)	161 (12)	44 (3)	195 (12)	-29(10)	67 (19)	10 (10)

Fig. 2. A packing diagram viewed approximately down a illustrating the two different stacking arrangements of the pyridine rings. The pyridine ring $\mathrm{N}(1 a)$ to $\mathrm{C}(6 a)$ is the ' a-ring' or type II and the $\mathrm{N}(1 b)$ to $\mathrm{C}(6 b)$ is the ' b-ring' or type I.

Table 2. The final parameters of the hydrogen atoms in $\mathrm{ZnCl}_{2}(\mathrm{py})_{2}$
The positional parameters are $\times 10^{3}$. The number in parentheses is the number of the C atom to which the H is bonded at a distance given in the last column.

		y	z	$B\left(\AA^{2}\right)$	Distance (\AA)
$\mathrm{H}(2 a)$	707	-22	-66	$7 \cdot 2$	$1 \cdot 11$
$\mathrm{H}(3 a)$	743	-56	-299	$8 \cdot 2$	$1 \cdot 32$
$\mathrm{H}(4 a)$	987	23	-382	$6 \cdot 7$	$1 \cdot 12$
$\mathrm{H}(5 a)$	1089	142	-193	$7 \cdot 5$	$1 \cdot 05$
$\mathrm{H}(6 a)$	1006	181	8	$7 \cdot 2$	$1 \cdot 21$
$\mathrm{H}(2 b)$	403	146	251	$7 \cdot 6$	$1 \cdot 19$
$\mathrm{H}(3 b)$	206	240	171	$7 \cdot 9$	$1 \cdot 23$
$\mathrm{H}(4 b)$	295	380	88	$7 \cdot 4$	$1 \cdot 31$
$\mathrm{H}(5 b)$	556	385	41	$6 \cdot 7$	$1 \cdot 08$
$\mathrm{H}(6 b)$	784	282	126	$5 \cdot 9$	$1 \cdot 20$

The $\mathrm{Zn}-\mathrm{N}$ distances $[\mathrm{Zn}-\mathrm{N}(1)$ is 2.046 (5) and $\mathrm{Zn}-$ $\mathrm{N}(2)$ is 2.052 (6) \AA] average $2.049 \AA$ and are slightly longer than the average of $2 \cdot 01 \AA$ reported by SAP, and the values of $2.044 \AA$ found in $\mathrm{ZnCl}_{2}\left(4-\mathrm{CH}_{3}-\mathrm{py}\right)_{2}$ by Lynton \& Sears (1971), benceforth LS. While the difference between 2.049 and $2.044 \AA$ is not significant, the shorter distances for the $4-\mathrm{CH}_{3}$-py derivative are reasonable in terms of the relative $p K_{b}$'s given by Perrin (1975) of 8.77 for py and 8.00 for $4-\mathrm{CH}_{3}$-py. A more complete discussion of the variation in the $\mathrm{Zn}-\mathrm{N}$ distances versus $p K_{b}$ will be deferred until our other studies have been completed.

The $\mathrm{Zn}-\mathrm{Cl}$ distances of $2 \cdot 215$ (2) and 2.228 (2) \AA appear to be significantly different and are slightly longer than the original values of SAP of $2 \cdot 18 \AA$ and the values of $2 \cdot 204$ (2) and $2 \cdot 211$ (2) reported by LS for the $4-\mathrm{CH}_{3}$-py complex. The small but significant lengthening of the $\mathrm{Zn}-\mathrm{Cl}$ distances in the pyridine derivative is probably due to the non-bonded interactions between the Cl atoms and the H atoms on the pyridine rings. There are short $\mathrm{Cl} \cdots \mathrm{H}$ contacts both intramolecularly and intermolecularly with the latter related to the packing of the pyridine rings (see below).

The various angles in the coordination sphere deviate
from ideality in a manner which reflects the various non-bonded contacts. The $\mathrm{Cl}-\mathrm{Zn}-\mathrm{Cl}$ angle of $120.9(1)^{\circ}$ is very laıge to minimize $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions. In the corresponding $4-\mathrm{CH}_{3}$-py complex, where LS found the $\mathrm{Zn}-\mathrm{Cl}$ distances were slightly smaller, the $\mathrm{Cl}-\mathrm{Zn}-\mathrm{Cl}$ angle opens up to $121 \cdot 8(1)^{\circ}$. The $\mathrm{N}-\mathrm{Zn}-\mathrm{N}$ angles of $106 \cdot 3$ (2) in the py derivative and $100.6(2)^{\circ}$ in the 4- CH_{3}-py complex reflect the larger $\mathrm{Cl}-\mathrm{Zn}-\mathrm{Cl}$ angle.

A final point of interest concerns the packing in the crystal which is somewhat unique for the pyridine complex because the 4 position has only the relatively small H atom. As noted by SAP there are two types of stacking in the $\mathrm{ZnCl}_{2} \mathrm{Py}_{2}$ crystal, see Fig. 2. The ' a ' rings or type II of SAP are related by a center of symmetry into dimer-like units. The rings are parallel and about $3.7 \AA$ apart. The ' b ' rings or the type I of SAP are related by the c glide and form an infinite column in the crystal. The rings are tipped about 25° from being parallel, and the interplanar distances vary from $3 \cdot 4$ to $4 \cdot 1 \AA$.

We wish to thank the Northeast Regional Data Center at the University of Florida for a grant of computer time.

References

Dymock, K. \& Palenik, G. J. (1974). Acta Cryst. B30, 1364-1366.
Hanson, H. P., Herman, F., Lea, J. D. \& Skillman, S. (1964). Acta Cryst. 17, 1040-1044.

Lynton, H. \& Sears, M. C. (1971). Can. J. Chem. 49, 3418-3424.
Pauling, L. (1960). The Nature of the Chemical Bond, 3rd ed., p. 260. Ithaca: Cornell Univ. Press.
Perrin, D. D. (1975). Dissociation Constants of Organic Bases in Aqueous Solution: Supplement 1972. London: Butterworths.
Sokolova, Y. A., Atovmyan, L. O. \& Porai-Koshits, M. A. (1965). J. Struct. Chem. 7, 794-797.

Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175-3187.

[^0]: * Maximum deviations of the ten naphthalene atoms contained in the best least-squares planes are $0.032 \AA$ [C(16)] for $\mathrm{C}_{20} \mathrm{H}_{24}$ and $0.069 \AA[\mathrm{C}(16)]$ for $\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{O}_{3} \mathrm{Cr}$. The respective r.m.s. deviations are 0.017 and $0.049 \AA$.

